Topic 3-Lineur first order ODES

A linear first order ODE is an
equation of the form
$$a_1(x)y' + a_0(x)y = g(x)$$

If we are considering an interval I where
 $a_1(x) \neq 0$ for any x in I then we
can divide through by $a_1(x)$ to get
 $y' + a(x)y = b(x)$
where $a(x) = \frac{a_0(x)}{a_1(x)}$ and $b(x) = \frac{g(x)}{a_1(x)}$.
This is the type of equation that
we will consider for now.

Suppose we have a linear first order ODE of the form y' + a(x)y = b(x) (*) 4 where a(x) and b(x) are Continuous un an open interval I. Let's solve this. Ex: $y' + Z \times y = X$ a(x) = 2x b(x) = XSuppose $\phi(x)$ solves (*) UN I. $\mathbb{T} = (-\infty,\infty)$ $\phi'(x) + \alpha(x) \phi(x) = b(x)$ (x) for all x in I. EX: a(x) = 2xLet A(x) be an $anti-A(x) = x^2$ derivative of a(x) on I. Note: A(x) exists by the FTOC since a(x) is continuous.

Multiply (**) by ca(x) to get: $e^{A(x)}\phi'(x) + a(x)\phi(x) = e^{A(x)}b(x)$ This gives (by the product rule (fg)'=f'g+g'f) $\left(e^{A(x)} \not\in (x)\right)' = e^{A(x)} \not\in (x)$ Let B(x) be an anti-derivative of e^{A(x)}b(x) on I. integrate both sides \mathcal{U} respect Then \$ solves (*) on I if 10 Х and only if $e^{A(x)}\phi(x) = B(x) + C$ where C is some constant. So, & selves (*) on I if and only if $\varphi(x) = B(x)e^{-A(x)} + Ce^{-A(x)}$

Since all the steps above are reversable since eA(x) =0 We know we have found the general solution to (+).

$$\frac{E \times i}{y' + 2xy} = x$$

$$q(x) = 2x$$

$$q(x) = 2x$$

$$d(x) = x$$

$$d(x) = \int 2x dx = x^{2}$$

$$\frac{Step 1!}{Multiply} \quad by \quad e^{A(x)} = e^{x^{2}} \quad to \quad get$$

Step 1:
$$A(x) = \int 2x dx = x$$

Multiply by $e^{A(x)} = e^{x^2}$ to get
 $e^{x^2} y'(x) + 2x e^{x^2} y(x) = x e^{x^2}$
Step 2: Undo the product rule on
the left-hand side :
 $\left(e^{x^2} y(x)\right)' = x e^{x^2}$

Step 3: Integrate both sides to get:

 $e^{X} \cdot y(x) = \frac{1}{2}e^{X} + C$ $xe^{x}dx = \frac{1}{2}\int e^{u}du$ $u = x^{2} = \frac{1}{2}e^{+}C$ $du = 2xdx = \frac{1}{2}e^{+}C$ du = xdx

Step 4: $y = \frac{1}{z} + Ce^{-x}$ Thus, Constant C for some

<u>Step 3:</u> Integrate both sides. $e^{\sin(x)}y(x) = \sin(x)e^{\sin(x)}e^{\sin(x)}$ 4 J sin(x) cos(x) e^{sin(x)}dx $= \int t e^{t} dt = t e^{t} - \int e^{t} dt$ t = sin(x) dt = cs(x)dx $u = t dv = c^{t}dt$ $du = dt v = e^{t}$ $\int u dv = uv - Svdu$ $z te^t - e^t + C$ $= sin(x)e^{sin(x)}e^{sin(x)}+c$ Step 4: Thus, -sin(x) = sin(x) -1 + CeC is some constant. where

Ex: Consider the equation $xy' + y = 3x^{3} + 1$ $On \quad \underline{T} = (0,\infty).$ Since $x \neq 0$ on I we can divide by x to get $y' + \frac{1}{x}y = 3x^2 + \frac{1}{x}$ $a(x) \qquad b(x)$ Step 1: Let A(x) = ln(x). Then, $A'(x) = \frac{1}{x}$ for all x in I. Multiply by $e^{A(x)} = e^{\ln(x)} = x$ to get $xy'+y=3x^3+1$ Step 2: Undo the product rule to get $(XY)' = 3X^{3} + 1$

Step 3: Integrate both sides to yet

$$xy = S(3x^3+1)dx = \frac{3}{4}x^4 + x + C$$

Step 4: Thus,

$$y = \frac{3}{4}x^3 + 1 + \frac{c}{x}$$

where C is a constant.

$$Ex: Solve$$

$$Xy' + y = 3x^{3} + 1$$

$$y(1) = 2$$
on $T = (0, \infty)$
From above we know $y = \frac{3}{4}x^{3} + 1 + \frac{C}{x}$
From above we know $y = \frac{3}{4}x^{3} + 1 + \frac{C}{x}$
Plugging in $y(1) = 2$ we get
$$Z = y(1) = \frac{3}{4}(1)^{3} + 1 + \frac{C}{1}$$

$$\begin{array}{c} So, \\ Z = \frac{z}{4} + C \end{array}$$

Thus,
$$L$$

 $c = 4$

Thus,

$$y = \frac{3}{4}x^{3} + 1 + \frac{C}{x}$$